
Intermediate Python - Data Structures

Bill Mellman
Program Manager

Clermont County Office of
Environmental Quality

Ohio GIS Conference

Hyatt Regency Columbus
September 23 – 25, 2019

Columbus, Ohio

Presenter
Presentation Notes
Bill Mellman, GISP
Project Manager
Clermont County Water Resources
4400 Haskell Lane
Batavia, OH 45103
Phone: (513) 732-7874
Mobile: (513) 309-4836
Fax: (513) 732-7310
Email: bmellman@clermontcountyohio.gov
Web: http://www.oeq.net/

Intermediate Python

Data Structures

Presenter
Presentation Notes
Welcome.

Refresher

• Nearly everything in Python is an object
• Thus all variables are pointers (references)
• Objects have Properties and Methods
• All objects have a “Data Type”

– What is Python’s approach, is it:
• “strongly/weakly” typed?
• “dynamically/statically” typed?

• Python calls it “Duck Typing”
– Ignore the type, and just look for the property/method.

Presenter
Presentation Notes
Duck Typing: “If it walks like a duck and talks like a duck then it’s a duck.” But what the heck does that mean? It means if there’s a method to do what you’re looking for then, sure, that’s what data type it is. If not then you’ll get a “type” error which is actually an Attribute error, for instance: AttributeError: 'float' object has no attribute 'append‘ That is, a float is not the same data type as a list essentially because it has different methods.

So Duck Typing is about having the right methods. I used to think of the movie “Jerry Maguire”, and Cuba Gooding Jr. saying: “SHOW ME THE METHOD!!! With the right methods life is easy, so now I think of the move “The Matrix” and think of Duck Typing as “The Blue Pill” typing. So long as the method exists you can go on believing it’s whatever data type you want to believe.

Refresher: Cursors

• Cursors are a result from a database query

• arcpy.da.SearchCursor
– Read an existing record

• arcpy.da.InsertCursor
– Create a new record

• arcpy.da.UpdateCursor
– Read and modify individual fields of an existing record
– Delete an existing record

SearchCursor:

SearchCursor(table, field_names, {where_clause})

Presenter
Presentation Notes
If you’re a beginner in arcpy then there’s no single bigger bang-for-your-buck than learning how to use the search cursor (from the Data Access or .da module). No other single command gives you so much power for so little investment. The arcpy.da.SearchCursor typically takes three arguments: the table, the columns of the table, and the rows of the table). Note the third argument is optional, and omitting it returns all rows of the table.

Camera Inspections

Presenter
Presentation Notes
The camera is a wheeled robot with a cable tether. Cables are typically 500-1000 feet long. This operates from a small truck or large van. The camera is controlled from within the truck and the televising software and DVR functions are rack mounted units also in the truck. The truck is typically always off-line, and the data (many Gb due to the videos) is transferred via sneaker net about once a week.

Presenter
Presentation Notes
Open a manhole, drop the camera down, drive the robot down the pipe to the next manhole recording video the whole way. Then pull/drive the robot back. The robot is tethered so it can’t come out the other manhole. The camera can run in either direction, but typically its run downstream.

WinCan

Presenter
Presentation Notes
WinCan (https://www.wincan.com/) and other televising software lets you record problems or issues discovered in the pipe. These are called “Observations”. The software also allows for the documentation of “taps” which is when a residential feed line taps into the pipe running down the street. These two different types of events are stored as point locations in two point feature classes. WinCan is a partner of Esri’s but their GIS tools are an add-on which we declined to purchase (because I’d already coded this for an older version of WinCan which did not have GIS integration). WinCan uses SQL CE (or SQL Server Compact). We use dbMigration (https://fishcodelib.com/) to convert the .SDF file to an .MDB file so arcpy can use its cursors on it.

The Problem

• MakeQueryTable in the old version
– Joined four tables

• Complex table relationships

– Now six tables with non-sequential relationships

• Solution: Use Python rather than arcpy

Presenter
Presentation Notes
Problems were encountered when upgrading from the old version of the program which added movie data to our GIS. Each of the old tables had a foreign key with a one-to-many relationship to the next table in increasing detail. Some of the new tables had many-to-many relationships, and the movies were now tied in through records we don’t read.

Data Structures

• Numbers and Strings
• Lists

– sets, array module
• Tuples - immutable, so may be used as dictionary keys.

– N- dimensional “array”

• Dictionaries
• Collections module
• Classes

Presenter
Presentation Notes
So, what does Python offer us?

List-Like Data Structures
Structure Difference from List

Tuple Immutable

Set Unique

Array Homogenous

• Use tuples when the position is important.
o (lat, long) != (long, lat)

• Use sets when you need to know if something exists.
o e.g. Think of sets as a group of flags

• Arrays (a module) are rare, and for special cases.
o Not to be confused with arcpy.Array

Presenter
Presentation Notes
The Python implementation of Esri’s geoprocessing tools (contained in the arcpy module) is heavily weighted toward lists. Most common is the fields list that the cursors use. I would argue that a tuple would be a conceptually better structure because the order of the fields matters. The user is specifying exactly how they want their returned sub-table to look. This should be immutable.

To implement Geometries in Python Esri created a number of classes. One of them is the arcpy.Array class. This is NOT the same thing as a Python built-in array type. It does look a little like the traditional definition of an array: it is (mostly) comprised of like-objects: arcpy.Points. Actually though each object in an arcpy.Array can be either an arcpy.Point or an arcpy.Array (though this is not recursive, the nesting stops at one level). arcpy.Arrays use square brackets [] as start-end markers. The arcpy.Array class is almost certainly a polymorph of the Python list data type.

A Note About Indexing
• # Poor Using “Magic Numbers”
FirstPoint = currentRow[1][0][0]

• currentRow is a feature
• FirstPoint is the first point in the list of points

defining the shape of that feature.

Presenter
Presentation Notes
Numbers in code which represent something, but which are not specified are sometimes called “Magic Numbers”. Wikipedia says Magic Numbers are “Unique values with unexplained meaning or multiple occurrences which could (preferably) be replaced with named constants.” Avoid Magic Numbers.

Use “constant” names instead of numbers when indexing into anything (lists, tuples, arcpy Arrays, even strings sometimes). I call these “index constants”. They are defined in one place in your code, and they NEVER change. Use all caps or some other code to tell yourself that they’re constants and they will never be changed by the code.

A Note About Indexing
• # Poor Using “Magic Numbers”
FirstPoint = currentRow[1][0][0]

• # Better # Field Names
OID_ = 0 # Allows you to rearrange or add/subtract
SHAPE_ = 1
SIZE_ = 2
 # Object Description
ARRAY_ = 0 # Helps identify the components as you
POINT_ = 0 # go down the rabbit hole.

FirstPoint = currentRow[SHAPE_][ARRAY_][POINT_]

Presenter
Presentation Notes
Two different uses of index constants on this slide. The first is using indexes for field positions. The field positions are set by the Fields parameter of the arcpy cursor commands. These do NOT have to be in the order they are in the original table. Choose only the fields you need, but if you decide you need a new field it only means adding a new index and possible changing the index number, but this only happens in one place in your code, and you don’t have to think about it when you’re coding.

The value of this can’t be stressed enough. On this project there were probably up to a hundred fields I did not use, but sometimes after coding for a while I would discover that there was another field which I needed to pull in. It would have been a nightmare to add a field if I’d not used index constants.

The second use for indexing is simply to point out what data type the index points to. GIS features with one part have only one arcpy.Array so most of the time you’re simply getting the [0] index, but using the word “ARRAY” in your code tells you at a glance what the object is. In the case above the variable FirstPoint refers to an arcpy.Point object because we’ve indexed into the arcpy.Array and pulled out a point.

Finally, as above, there might be many cases where an index or sub-index is 0 and yet refer to fundamentally different things. Using named indexes helps you more quickly recognize the objects in your code.

A Note About Indexing
• # A feature:
• FirstPoint = currentRow

• # An arcpy Geometry: (The Shape column of the feature table)
• FirstPoint = currentRow[SHAPE_]

• # An arcpy Array: (A list of feature parts & vertices)
• FirstPoint = currentRow[SHAPE_][ARRAY_]

• # A single point (an arcpy.Point)
• FirstPoint = currentRow[SHAPE_][ARRAY_][POINT_]

Python Dictionaries

• Hash, associative array, key-value pairs

• Key -> Value
– A key only points to one value
– A value may be pointed to by 1 or more keys

• Keys must be immutable (strings are immutable)

• Values may be any type (strings, lists, dictionaries,…)

Presenter
Presentation Notes
Python dictionaries are sets of key-value pairs. In a key value pair one piece of data (the key) references another piece of data (the value). For instance an OBJECT_ID references a row of information (a tuple) in a table. We can think of a table as a set of key-value pairs. Thus we can think of a Python dictionary as a kind of table.

Keys must be unique (and hence immutable). Thus the keys form a set*. The values may or may not form a set.

* Technically the analogy is broken here because sets in Python are mutable.

Presenter
Presentation Notes
Note that a value can only exist if a key exists and points to it. A dictionary is a mapping of every key to exactly one value.

Presenter
Presentation Notes
Each key can only map to one value, and thus keys in the original dictionary which point to the same value in the set of values must be collapsed to something such as a list.

The value 2 was mapped to by two different keys, but each of those keys only mapped to one value. In the inverse, the *key* 2 can only map to one value so to preserve the inverse the key 2 must now be mapped to a (single) list of all the (many) values which as keys had pointed to the value 2. You could use a tuple instead of a list, but that implies that there is an order, which in this example there is minimal evidence for (only the fact that numbers and letters typically form known sequences – if we’d used colors there would be even less evidence of an order)

def invert_dict_nonunique(d): # https://www.saltycrane.com/blog/2008/01/how-to-invert-dict-in-python/
 newdict = {}
 for k, v in d.iteritems():
 newdict.setdefault(v, []).append(k) # Note: k is entered even on first run when list is created
 return newdict
End def invert_dict_nonunique

Python Dictionaries

• { key1 : val1, key2 : val2, …}

• Name[key] = value

• .keys() # a list of all the keys

• .values() # a list of all the values

• .items() # a list of (key,value) tuples

Presenter
Presentation Notes
Note, the order of the keys is not guaranteed to be the order in which they were inserted. However the position of the key in the keys() list is the same as the position of the value in the values() list.

MyDictionary = {} # Create an empty dictionary
MyDictionary = {'c':'cat', 'd':'dog'} # Create non-empty
MyDictionary.values()
 [‘cat', 'dog']

MyDictionary['c'] = 'dog' # Set/change one value

MyDictionary.keys() # A list of the keys
 ['c','d']
MyDictionary.values() # A list of the values
 ['dog', 'dog']

Presenter
Presentation Notes
You can create empty dictionaries or populated dictionaries by using the brace notation: {}

Dictionaries are mutable (even though the keys of a dictionary must be immutable). You can create a new entry or change an existing entry by using the key on the left side of the assignment and the value on the right side of the assignment.

Very JSON-like

• Well, not really…

• JSON is just a string with syntax reminiscent of
a dictionary’s syntax.

• A dictionary is a true data structure.
• Still, if you know dictionaries,
 then you essentially know JSON.

Presenter
Presentation Notes
I found I was able to understand JSON instantly because I’d already been using Python’s dictionaries (and Perl’s associative arrays before that).

Lookup Tables
StateAbrev = {}

StateAbrev['Alaska'] = 'AK'
StateAbrev['Alabama'] = 'AL'
…
StateAbrev['Wyoming'] = 'WY‘

__

print StateAbrev['Ohio']
 OH

Presenter
Presentation Notes
In the WinCan software a pipe is called a Section. When the camera crew runs the robot it is called an Inspection. One Section can be covered by one or more Inspections. For instance the robot might encounter an obstacle so the operators have to pull the robot our and then put it in to the other end of the pipe to film the remaining part of the Section. In this case these two Inspections cover the same Section. I used a lookup table to get the Section OID from the Inspection. When reading the Inspections table I used this code to create the lookup table:

Inspections2Section[InspectionOID] = SectionOID

Then, later in the code whenever I needed the Section data I could get it from the Inspection:

Section[Inspections2Section[InspectionOID]]

Pull a cursor into a dictionary
fieldsList = []
fieldsList.append('OID@'); OID_ = 0 # Arcmap’s …
fieldsList.append('SHAPE@'); SHAPE_ = 1 # Geometry
fieldsList.append('Size'); SIZE_ = 2 # Diam, inch
fieldsList.append('Length'); LEN_ = 3 # Camera’s …

Sections = {}
with arcpy.da.SearcchCursor\
 (SectionsTable, fieldsList) as tableRows:
 for Row in tableRows:
 Sections[Row[OID_]] = Row # *if* the OID is unique

Presenter
Presentation Notes
Ignore everything but the highlighted part of this slide. The highlighted part: that’s stuffing the dictionary 'Sections‘.

SearchCursor -> dictionary speed:
~ 10,000 sewerline observation point XY tuples ~ 1/2 second
~100,000 parcel polygons < 30 seconds

Count words in a file

WordsCount = {}
with open(fileName,'r') as theFile:
 for line in theFile:
 for word in line.split():
 if word in WordsCount.keys():
 WordsCount[word] += 1
 else:
 WordsCount[word] = 1

Presenter
Presentation Notes
Note that we’re not using the value to hold anything other than frequency. The actual words of the file are stored in the keys.

A Common Dictionary Error

• Why don’t we just use this:

 for word in line.split():
 WordsCount[word] += 1

– KeyError
– DefaultDict

Presenter
Presentation Notes
Several ways to avoid this:
 - if key in dictionary (same as if key in dictionary.keys())
 - dictionary.setdefault(k, v)
 - collections.defaultdict

Copying Dictionaries

• dictionary.copy()

• The copy module

– copy.copy
– copy.deepcopy

Presenter
Presentation Notes
In BOTH cases the target object is copied as a NEW object. The question is, what to do with references *withIN* the newly copied object.

copy.copy: Internal references are copied as references, NOT as the object.

copy.deepcopy: Internal references are copied as referenced objects: A new object is created.

Useful built-in functions for objects

• type() Data type

• dir() List of methods

• id() Unique identifier for life of object

• is True if references are the same

Presenter
Presentation Notes
These apply to all Python objects, not just dictionaries.

Dictionary Comprehensions

• Same idea as a List Comprehension

fruits = ['apple','mango','banana','cherry']
D = {f:len(f) for f in fruits if len(f)>5}
 {'banana': 6, 'cherry': 6}

D1 = {'a':1, 'b':2, 'c':3, 'd':4}
DD1 = {k:v*2 for (k,v) in D.items()}
 {'a':2, 'b':4, 'c':6, 'd':8}

Presenter
Presentation Notes
New dictionaries can be made from comprehensions.

Examples quoted from:
 https://www.datacamp.com/community/tutorials/python-dictionary-comprehension
 http://cmdlinetips.com/2018/01/5-examples-using-dict-comprehension/

Adding Complexity

• Dictionaries (and Lists and other structures) can
be multi-dimensional and complex.

• Keys could be 2-tuples or higher
• Values can be complex structures

– Lists
– Lists of lists
– Lists of lists and tuples and dictionaries of lists

• WARNING:
– Highly complex data structures can lead to hair loss…

Presenter
Presentation Notes
Dictionaries (and Lists and other structures) can be multi-dimensional. This can be done in a few different ways such as using tuples as keys, or embedding entire dictionaries within a dictionary.

Two dimensional 3x3 dictionary:
>>> d[(0,0)] = "X"
>>> d[(0,1)] = "O"
>>> d[(0,2)] = "X"
>>>
>>> d[(1,0)] = "X"
>>> d[(1,1)] = "X"
>>> d[(1,2)] = "O"
>>>
>>> d[(2,0)] = "O"
>>> d[(2,1)] = "X"
>>> d[(2,2)] = "O"
>>>

Thank you and Happy Coding

Bill Mellman, GISP
Project Manager
Office of Environmental Quality
Clermont County Water Resources
4400 Haskell Lane
Batavia, OH 45103
Phone: (513) 732-7874
Mobile: (513) 309-4836
Fax: (513) 732-7310
Email: bmellman@clermontcountyohio.gov
Web: http://www.oeq.net/

	Slide Number 1
	Intermediate Python
	Refresher
	Refresher: Cursors
	Slide Number 5
	Camera Inspections
	Slide Number 7
	Slide Number 8
	The Problem
	Data Structures
	List-Like Data Structures
	A Note About Indexing
	A Note About Indexing
	A Note About Indexing
	Python Dictionaries
	Slide Number 16
	Slide Number 17
	Python Dictionaries
	Slide Number 19
	Very JSON-like
	Lookup Tables
	Pull a cursor into a dictionary
	Count words in a file
	A Common Dictionary Error
	Copying Dictionaries
	Useful built-in functions for objects
	Dictionary Comprehensions
	Adding Complexity
	Thank you and Happy Coding

