
Building a logical stream
network with Python

Bill Mellman
Program Manager

Clermont County Office of
Environmental Quality

Ohio GIS Conference

Hyatt Regency Columbus
September 24 – 26, 2018

Columbus, Ohio

StreamNet:

• A tool to organize spatial data in a data

structure more spatially aligned to the
real world than a table.

• Use a binary tree to represent a stream
network

• History

Presenter
Presentation Notes
I taught “Python Programming for GIS” for the Xavier University Computer Science department in 2014 & 2017. StreamNet was the final project in both courses. While refining the tool for the second course I turned it loose on my data for Clermont County Stormwater/OEQ where it helped me quickly find data errors.

Is Python easy to learn?

• Javascript is easy to learn, C is easy to

 learn, html is easy to learn, brain surgery is easy to learn, …..

• Besides, it’s the API which is the

difficult part.

Presenter
Presentation Notes
Sure, says the person who just spent a year learning Python. Python is as easy to learn as any other interpreted language. It’s a much more meaningful statement to say that interpreted languages are easy to learn. However the real effort is in learning arcpy or any of the other python modules created by Esri (or others).

Key Arcpy & Python Concepts:

• Cursors

• Geometry

• Classes (Object-Oriented Programming)

Presenter
Presentation Notes
The Ohio GIS Conferences have had a few “Intro to Python” talks. I thought I’d kick it up a notch. Here are some advanced topics regarding working with data. I will not cover presentation processes such as those in the Esri ‘mapping’ module or administrative processes such as those in the arcgis package.

Platform:

• ArcMap vs. ArcGIS Pro

• arcpy is arcpy
• I changed the print statements, and StreamNet ran

perfectly in Pro (Python 3.x).

• mapping is gone in pro
• Use the ‘mp’ module instead.

• QGIS’s point manipulation is nearly
identical to arcpy.

• Classes are Python not arcpy

Presenter
Presentation Notes
Other APIs are not so much about modifying data.

(Full Disclosure):

• Anything you can do with OOP you can

do with Procedural Programming.

• Anything you can do recursively you can
do iteratively.

• This is just another way to think about it.

Presenter
Presentation Notes
StreamNet is not some powerful new tool, it’s just a way to explore your data and Python’s capabilities. Other tree oriented structures have been created (though I conceived of and developed StreamNet on my own). A paper I found describes ‘WaterNet’, a project which sounds very similar to StreamNet: “WaterNet: A GIS Application for the Analysis of Hydrologic Networks Using Vector Spatial Data”, Olivera, Koka, & Nelson, Transactions in GIS, 2006, 10(3): 355–375

But…

• Everything in Python is an object.

• A table does not capture the

essence of the real world.

• This is a great learning tool.

Presenter
Presentation Notes
Disclosures given, there are some good reasons for creating an object oriented recursive tree builder. Python is already object oriented. A table does not show you where you are. A given row has no knowledge of how it relates to the other rows in the table. A relationship could be built, but a tree structure looks the way real streams look! This project was originally conceived as a pedagogical tool, and it worked well in that role.

Cursors:

• Use arcpy.da

• SearchCursor - Read
• InsertCursor - Create
• UpdateCursor - Modify & Delete

• Full load of ~40K stream lines to
Python dictionary in ~ 1 second.

Presenter
Presentation Notes
If you’ve been living under a rock for the last half decade there’s a new module on the block. Use arcpy.da

A common trip-up for some: use an Update Cursor to delete an entire record: row.deleteRow()

All three cursors use these parameters:

• The table or feature class

• The fields

• Restricting columns

• An optional where clause
• Restricting rows
• Not used by the Insert Cursor

SearchCursor:

SearchCursor(table, field_names, {where_clause})

Presenter
Presentation Notes
Select the variables/fields/columns you want to use by building a list of field names, e.g. [“OBJECTID”, “Name”, “StreamID”].
Use a where clause to restrict the records you work with.

Fields:

• Use a list or tuple of quoted elements.

• [“Name”, “Comment”]

• A tuple would be more meaningful
since order is important.

• Regardless, a list is more common

Presenter
Presentation Notes
The order of your fields is critical. The returned rows will be tuples of data ordered in the way you ordered your fields parameter. This order has NOTHING to do with the order the fields were defined. It could be the same, or the complete opposite, or an entirely random jumble compared to the table or feature class’s schema.

Use “constants” for readability:

• Fields = [“Address”, “City”, “State”]

• Cursor rows indexed by position
• “Address” is row[0]

• Use a “constant”
• (a variable constrained by standards, e.g. all caps)

 ADDRESS = 0
Row[ADDRESS]

Presenter
Presentation Notes
Say we’re using these fields: [“Address”, “City”, “State”] returned as the tuple: ‘row’ Then to get the Address we get the zero-th element of ‘row’.
Thus the Address is: row[0] However, if we define an all-caps variable (telling us we’re treating it as a constant) such as: ADDRESS = 0

Then we can have a much more readable line: row[ADDRESS]

Arcpy Tokens:

• “OID@” (an Esri OBJECTID)

• “SHAPE@” (a geometry)
• (This is the “Shape” column)

• “SHAPE@X” (a float)

• “*” (everything)

What’s in a Geometry?:

Presenter
Presentation Notes
Off topic note: The fields in the where clause do not need to be in the fields list.

Note: this code looks at just one record. The one record has only two fields.

Geometries are made of Arrays which are made of Points.

Geometries:

• The Shape column contains a
Geometry object

• A Geometry object contains an
Array (polyline & polygon FCs) or a
Point (Point FC)

• An Array is a list-like structure
• Probably a polymorph of a list.

Multi-part features:

• An Array is composed of Points
 or other Arrays or both

• The rabbit hole isn’t very deep

• Features nest only one layer down

• No Arrays of Arrays of Arrays.
• If you merge two multipart features you get ONE

multipart feature with the sum of the parts.

Presenter
Presentation Notes
The Data structure allows it, but Esri doesn’t use it. If you merge Hawaii (ten parts) with Michigan (2 parts) you get Hawigan which has twelve parts, NOT a feature with two parts each with sub-parts. That is, there are parts, but not sub-parts.

Just a thought, if it were otherwise:

• If Arrays contained arrays of arrays

of arrays of arrays …

• Then recursion would be the way to
think of the problem.

Streams:

• All lines simple
• Lines drawn: Upstream -> Downstream

• (arrow at end/downstream)
• Only two lines meet
• Endpoints snapped to Startpoints

Presenter
Presentation Notes
Ground rules for this project.

Streams:

• The “Children” are the tributaries
• Somewhat backwards in concept

Presenter
Presentation Notes
Since StreamNet starts at the mouth of a stream network (typically a HUC 12 watershed defining stream), it works its way upstream building the stream tree. From the programming point of view “child” data objects are instantiated from the tributary streams (which might otherwise be called parents).

Classes:

• Data-centric
• Encapsulates all the things you want to do

with your data.
• Each piece of data is an object with its own

methods and properties.

“Variables are just names”:

• Variables are just pointers

In other languages:
 B = A
 # You’ve just created a new object ‘B’
 # B is a copy of A

In Python:
 B = A
 # You’ve just given A a second name.

“Duck Typing”:

• Type checking is only performed

when the call is made to a method

• “Show me the Method!”
• Python just calls the method
• This either works or it doesn’t

Questions?

• Slides and code will be here:

• http://stormwatermapping.com/GIS/StreamNet/

http://stormwatermapping.com/GIS/StreamNet/�

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30

